A New Biflavonoid from Stellera chamaejasme L.

Bao Min FENG^{1*}, Yue Hu PEI², Hui Ming HUA²

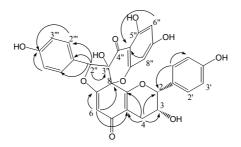
1. College of Bioengeering, Dalian University, Dalian 116622 2. School of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016

Abstract: A new biflavonoid, stelleranol, was isolated from the roots of *Stellera chamaejasme* L.. Its structure was determined by the analysis of MS and NMR data, especially 2D NMR spectra.

Keywords: Stellera chamaejasme L., flavonoids, biflavonoids.

Stellera chamaejasme L. (Thymelaeaceae) is widespread in the north of China. S. chamaejasme L. has been known to contain biflavonoids and up to now a few biflavonoids have been isolated from this plant [1-4]. During investigation of chemical constituents of the roots of this plant, a new biflavonoid, stelleranol has been isolated.

Stelleranol was isolated as brown powder, mp $264\sim266^{\circ}\text{C}$ (MeOH/H₂O). [α]_D=-103 (c0.26, MeOH). Positive FeCl₃ reaction showed the existence of phenolic hydroxy groups. Its molecular formula was deduced to be C₃₀H₂₂O₁₁ through the information of ESI-MS ([M-H]⁻=557) and NMR data. In ¹H NMR (acetone-d₆) signals at 7.22 (d, 2H, J=8.6Hz), 6.83 (d, 2H, J=8.6Hz), 6.71 (d, 2H, J=8.6Hz) and 6.62 (d, 2H, J=8.6Hz) suggested two 4-oxyphenyl groups. Signals at δ 6.16 (d, 1H, J=2.2Hz), 6.14 (d, 1H, J=2.2Hz) indicated the presence of a 1, 2, 4, 6-tetra substituted aromatic ring. Signals at δ 2.66 (d, 1H, J=17.0Hz), 2.49 (dd, 1H, J=17.0, 3.7Hz) corresponded to a –CH₂- group. ¹H NMR also showed 4 –CH- signals at δ 6.09, 5.70, 4.96 and 4.18. Besides those functional groups described above, ¹³C NMR (acetone-d₆) indicated 2 carbonyls (δ 191.8, 187.8) and 2 oxygen attached quaternary carbons (δ 86.4, 81.0) too.


The foregoing spectra studies and further HMBC experiment on stelleranol suggested its similarity to genkwanol B and genkwanol C isolated from the roots of *Dapnhe genkwa* [5, 6]. *J* values between H-2 and H-3 in genkwanol B and genkwanol C were 8.4, 6.2 respectively. But that of stelleranol was so little that H-2 and H-3 showed singlet signals [H-2 at 4.96 (s, 1H), H-3 at 4.18 (s, 1H)]. These suggested that configuration at C-2/C-3 of genkwanol B and genkwanol C was *trans*, while it was *cis* in stelleranol. The chemical shifts of H-2 and H-3 are similar to those of (-)-epicatechin [7], through which configurations at C-2 and C-3 were both deduced to be α . The assignments of 1 H NMR and 13 C NMR data were finished by HMQC and HMBC

_

^{*} E-mail: fbmsypu@sohu.com

analysis as shown in Table 1.

Figure 1 Structures and main HMBC correlations of stelleranol

Table 1 ¹H NMR and ¹³C NMR data of stelleranol

	¹H NMR	¹³ C NMR		¹H NMR	¹³ C NMR
2	4.96 (s, 1H)	81.2	2"	6.09 (s, 1H)	91.2
3	4.18 (brs, 1H)	65.4	3"		81.0
4	2.66 (d, 1H, <i>J</i> =17.0Hz) , 2.49 (dd, 1H, <i>J</i> =17.0, 3.7Hz)	27.6	4"		191.8
4a		110.0	4"a		100.9
5		87.8	5"		162.0
6	5.70 (s, 1H)	101.8	6"	6.14 (d, 1H, <i>J</i> =2.2Hz)	97.9
7		169.5	7"		168.9
8		86.4	8"	6.16 (d, 1H, <i>J</i> =2.2Hz)	97.4
8a		159.2	8"a		165.0
1'		129.4	1""		123.7
2'	6.71 (d, 1H, <i>J</i> =8.6Hz)	128.3	2""	7.22 (d, 1H, <i>J</i> =8.6Hz)	130.7
3'	6.62 (d, 1H, <i>J</i> =8.6Hz)	115.4	3""	6.83 (d, 1H, <i>J</i> =8.6Hz)	115.6
4'		157.5	4'"		159.0
5'	6.62 (d, 1H, <i>J</i> =8.6Hz)	115.4	5""	6.83 (d, 1H, <i>J</i> =8.6Hz)	115.6
6'	6.71 (d, 1H, <i>J</i> =8.6Hz)	128.3	6""	7.22 (d, 1H, <i>J</i> =8.6Hz)	130.7

References

- 1. G. Q. Liu, H. Tatematsu, M. Kurokawa, M. Niwa, Y. Hirata. Chem. Pharm. Bull., 1984, 32 (1), 362.
- 2. M. Niwa, H. Tatematsu, G. Q. Liu, Y. Hirata. Chem. Lett., 1984, 148 (4), 539.
- M. Niwa, X. F. Chen, G. Q. Liu, H. Tatematsu, Y. Hirata. *Chem. Lett.*, **1984**, *153* (9), 1587. M. Niwa, S. Otsuji, H. Tatematsu, *et al. Chem. Pharm. Bull.*, **1986**, *34* (8), 3249. K. Baba, M. Taniguchi, M. Kozawa. Phytochemistry, **1992**, *31* (3), 975.

- K. Baba, M. Taniguchi, M. Kozawa. Phytochemistry, 1993, 33 (4), 913.
- K. Baba, K. Takeuchi, M. Doi, M. Inoue, M. Kozawa. Chem. Pharm. Bull., 1986, 34 (4), 1540

Received 30 December, 2002